Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J. appl. oral sci ; 27: e20180574, 2019. graf
Article in English | LILACS, BBO | ID: biblio-1040233

ABSTRACT

Abstract Hypertension is one of the main causes of premature death in the world; also, it is associated with several bone alterations. Preclinical studies have demonstrated delayed alveolar bone healing in hypertensive rats. However, losartan has been favorable for consolidation of bone grafts and reduction in active periodontitis. Therefore, losartan is suggested to be effective in bone formation stages, as well as in the synthesis of matrix proteins and mineralization. Objectives: To evaluate the alveolar bone dynamics in hypertensive rats treated with losartan by laser confocal microscopy and histological analysis. Methodology: Thirty-two rats, 16 spontaneously hypertensive rats (SHR) and 16 Wistar albinus rats, treated or not with losartan (30 mg/kg/day) were used. Calcein fluorochrome at 21 days and alizarin red fluorochrome at 49 days were injected in rats (both 20 mg/kg). The animals were submitted to euthanasia 67 days after treatment, and then the right maxilla was removed for laser confocal microscopy analysis and the left maxilla for histological analysis. Results: This study showed a greater calcium marking in normotensive animals treated with losartan in relation to the other groups. Laser confocal microscopy parameters showed higher values of bone volume formed, mineralized surface, active surface of mineralization and bone formation rate in normotensive animals treated with losartan. However, a smaller mineralized surface was observed in all hypertensive animals. Conclusion: Losartan can improve bone mineralization parameters under normal physiological conditions, but the same anabolic effect does not occur under hypertension.


Subject(s)
Animals , Male , Losartan/pharmacology , Alveolar Process/drug effects , Alveolar Process/physiopathology , Hypertension/physiopathology , Antihypertensive Agents/pharmacology , Osteogenesis/drug effects , Rats, Inbred SHR , Time Factors , Blood Pressure/drug effects , Bone Regeneration/drug effects , Calcification, Physiologic/drug effects , Reproducibility of Results , Rats, Wistar , Microscopy, Confocal , Alveolar Process/pathology , Fluoresceins/analysis
2.
J. appl. oral sci ; 27: e20180014, 2019. graf
Article in English | LILACS, BBO | ID: biblio-975888

ABSTRACT

Abstract Stanozolol (ST) is a synthetic androgen with high anabolic potential. Although it is known that androgens play a positive role in bone metabolism, ST action on bone cells has not been sufficiently tested to support its clinical use for bone augmentation procedures. Objective: This study aimed to assess the effects of ST on osteogenic activity and gene expression in SaOS-2 cells. Material and Methods: SaOS-2 deposition of mineralizing matrix in response to increasing doses of ST (0-1000 nM) was evaluated through Alizarin Red S and Calcein Green staining techniques at 6, 12 and 24 days. Gene expression of runt-related transcription factor 2 (RUNX2), vitamin D receptor (VDR), osteopontin (SPP1) and osteonectin (ON) was analyzed by RT-PCR. Results: ST significantly influenced SaOS-2 osteogenic activity: stainings showed the presence of rounded calcified nodules, which increased both in number and in size over time and depending on ST dose. RT-PCR highlighted ST modulation of genes related to osteogenic differentiation. Conclusions: This study provided encouraging results, showing ST promoted the osteogenic commitment of SaOS-2 cells. Further studies are required to validate these data in primary osteoblasts and to investigate ST molecular pathway of action.


Subject(s)
Humans , Osteogenesis/drug effects , Stanozolol/pharmacology , Gene Expression/drug effects , Anabolic Agents/pharmacology , Osteoblasts/drug effects , Time Factors , Calcification, Physiologic/drug effects , Linear Models , Osteonectin/analysis , Osteonectin/drug effects , Reproducibility of Results , Analysis of Variance , Receptors, Calcitriol/analysis , Receptors, Calcitriol/drug effects , Cell Line, Tumor/drug effects , Core Binding Factor Alpha 1 Subunit/analysis , Core Binding Factor Alpha 1 Subunit/drug effects , Osteopontin/analysis , Osteopontin/drug effects , Real-Time Polymerase Chain Reaction
3.
J. appl. oral sci ; 24(3): 239-249, tab, graf
Article in English | LILACS, BBO | ID: lil-787550

ABSTRACT

ABSTRACT Diabetes mellitus (DM) causes an increased production of free radicals that can impair bone healing. Melatonin is a hormone secreted mainly by the pineal gland, which participates in the neutralization process of free radicals. Objective The aim of this study was to investigate histologic and biochemical effects of supplemental melatonin administration on bone healing and antioxidant defense mechanism in diabetic rats. Material and Methods Eighty-six Sprague-Dawley male rats were used in this study. Diabetes mellitus was induced by intraperitoneal (i.p.) administration of 65 mg/kg streptozotocin (STZ). Surgical bone defects were prepared in the tibia of each animal. Diabetic animals and those in control groups were treated either with daily melatonin (250 μg/animal/day/i.p.) diluted in ethanol, only ethanol, or sterile saline solution. Rats were humanely killed at the 10th and 30th postoperative days. Plasma levels of Advanced Oxidation Protein Products (AOPP), Malondialdehyde (MDA), and Superoxide Dismutase (SOD) were measured. The number of osteoblasts, blood vessels and the area of new mineralized tissue formation were calculated in histologic sections. Results At the 10th day, DM+MEL (rats receiving both STZ and melatonin) group had significantly higher number of osteoblasts and blood vessels as well as larger new mineralized tissue surfaces (p<0.05 for each) when compared with DM group. At the 30th day, DM group treated with melatonin had significantly lower levels of AOPP and MDA than those of DM group (p<0.05). Conclusion Melatonin administration in STZ induced diabetic rats reduced oxidative stress related biomarkers and showed beneficial effects on bone healing at short term.


Subject(s)
Animals , Male , Free Radical Scavengers/administration & dosage , Fracture Healing/drug effects , Diabetes Mellitus, Experimental/metabolism , Melatonin/administration & dosage , Osteoblasts/drug effects , Reference Values , Superoxide Dismutase/blood , Tibia/drug effects , Tibia/pathology , Time Factors , Fibrosis , Calcification, Physiologic/drug effects , Biomarkers , Cell Count , Reproducibility of Results , Rats, Sprague-Dawley , Streptozocin , Oxidative Stress/drug effects , Diabetes Mellitus, Experimental/chemically induced , Advanced Oxidation Protein Products/blood , Malondialdehyde/blood
4.
J. appl. oral sci ; 24(2): 153-161, Mar.-Apr. 2016. graf
Article in English | LILACS | ID: lil-779903

ABSTRACT

ABSTRACT Objective Biocompatible materials such as interconnected porous hydroxyapatite ceramics (IP-CHA) loaded with osteogenic cells and bioactive agents are part of an evolving concept for overcoming craniofacial defects by use of artificial bone tissue regeneration. Amongst the bioactive agents, melatonin (MEL) and basic fibroblast growth factor (FGF-2) have been independently reported to induce osteoblastic activity. The present in vitro study was undertaken to examine the relationship between these two bioactive agents and their combinatory effects on osteoblastic activity and mineralization in vitro. Material and Methods Mouse preosteoblast cells (MC3T3-E1) were seeded and cultured within cylindrical type of IP-CHA block (ø 4x7 mm) by vacuum-assisted method. The IP-CHA/MC3T3 composites were subjected to FGF-2 and/or MEL. The proliferation assay, alkaline phosphatase enzyme activity (ALP), mRNA expressions of late bone markers, namely Osteocalcin (OCN) and Osteopontin (OPN), and Alizarin Red staining were examined over a period of 7 days. Results FGF-2 mainly enhanced the proliferation of MC3T3-E1 cells within the IP-CHA constructs. MEL mainly induced the mRNA expression of late bone markers (OCN and OPN) and showed increased ALP activity of MC3T3 cells cultured within IP-CHA construct. Moreover, the combination of FGF-2 and MEL showed increased osteogenic activity within the IP-CHA construct in terms of cell proliferation, upregulated expressions of OCN and OPN, increased ALP activity and mineralization with Alizarin Red. The synergy of the proliferative potential of FGF-2 and the differentiation potential of MEL showed increased osteogenic activity in MC3T3-E1 cells cultured within IP-CHA constructs. Conclusion These findings indicate that the combination of FGF-2 and MEL may be utilized with biocompatible materials to attain augmented osteogenic activity and mineralization.


Subject(s)
Animals , Mice , Osteoblasts/drug effects , Fibroblast Growth Factor 2/pharmacology , Durapatite/pharmacology , Bone Substitutes/pharmacology , Melatonin/pharmacology , Time Factors , Materials Testing , Calcification, Physiologic/drug effects , Microscopy, Electron, Scanning , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Cell Proliferation/drug effects , Alkaline Phosphatase/analysis
5.
Braz. j. med. biol. res ; 49(2): e4888, 2016. tab, graf
Article in English | LILACS | ID: lil-766978

ABSTRACT

The aim of this study was to evaluate the effects of sodium hyaluronate (HY), single-walled carbon nanotubes (SWCNTs) and HY-functionalized SWCNTs (HY-SWCNTs) on the behavior of primary osteoblasts, as well as to investigate the deposition of inorganic crystals on titanium surfaces coated with these biocomposites. Primary osteoblasts were obtained from the calvarial bones of male newborn Wistar rats (5 rats for each cell extraction). We assessed cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and by double-staining with propidium iodide and Hoechst. We also assessed the formation of mineralized bone nodules by von Kossa staining, the mRNA expression of bone repair proteins, and the deposition of inorganic crystals on titanium surfaces coated with HY, SWCNTs, or HY-SWCNTs. The results showed that treatment with these biocomposites did not alter the viability of primary osteoblasts. Furthermore, deposition of mineralized bone nodules was significantly increased by cells treated with HY and HY-SWCNTs. This can be partly explained by an increase in the mRNA expression of type I and III collagen, osteocalcin, and bone morphogenetic proteins 2 and 4. Additionally, the titanium surface treated with HY-SWCNTs showed a significant increase in the deposition of inorganic crystals. Thus, our data indicate that HY, SWCNTs, and HY-SWCNTs are potentially useful for the development of new strategies for bone tissue engineering.


Subject(s)
Animals , Male , Calcification, Physiologic/drug effects , Hyaluronic Acid/pharmacology , Nanotubes, Carbon , Osteoblasts/drug effects , Titanium/metabolism , Apoptosis/drug effects , /metabolism , /metabolism , Cell Survival , Coated Materials, Biocompatible/pharmacology , Collagen Type I/metabolism , Collagen Type III/metabolism , Microscopy, Electron, Scanning , Nanotubes, Carbon/chemistry , Organometallic Compounds/pharmacology , Primary Cell Culture , Rats, Wistar , RNA, Messenger/analysis , RNA, Messenger/metabolism , Spectrometry, X-Ray Emission , Staining and Labeling/methods , Tissue Engineering/methods , Titanium/chemistry
6.
Biol. Res ; 48: 1-8, 2015. graf, tab
Article in English | LILACS | ID: biblio-950829

ABSTRACT

BACKGROUND: Tridaxprocumbens flavonoids (TPFs) are well known for their medicinal properties among local natives. Besides traditionally used for dropsy, anemia, arthritis, gout, asthma, ulcer, piles, and urinary problems, it is also used in treating gastric problems, body pain, and rheumatic pains of joints. TPFs have been reported to increase osteogenic functioning in mesenchymal stem cells. Our previous study showed that TPFs were significantly suppressed the RANKL-induced differentiation of osteoclasts and bone resorption. However, the effects of TPFs to promote osteoblasts differentiation and bone formation remain unclear. TPFs were isolated from Tridax procumbens and investigated for their effects on osteoblasts differentiation and bone formation by using primary mouse calvarial osteoblasts. RESULTS: TPFs promoted osteoblast differentiation in a dose-dependent manner demonstrated by up-regulation of alkaline phosphatase and osteocalcin. TPFs also upregulated osteoblast differentiation related genes, including osteocalcin, osterix, and Runx2 in primary osteoblasts. TPFs treated primary osteoblast cells showed significant upregulation of bone morphogenetic proteins (BMPs) including Bmp-2, Bmp-4, and Bmp-7. Addition of noggin, a BMP specific-antagonist, inhibited TPFs induced upregulation of the osteocalcin, osterix, and Runx2. CONCLUSION: Our findings point towards the induction of osteoblast differentiation by TPFs and suggested that TPFs could be a potential anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis.


Subject(s)
Animals , Mice , Osteoblasts/drug effects , Osteogenesis/drug effects , Flavonoids/pharmacology , Cell Differentiation/drug effects , Asteraceae/chemistry , Osteoblasts/cytology , Osteoblasts/metabolism , Skull/cytology , Skull/drug effects , Transcription Factors/genetics , Flavonoids/analysis , Calcification, Physiologic/drug effects , Osteocalcin/drug effects , Osteocalcin/genetics , Up-Regulation/genetics , Bone Morphogenetic Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Alkaline Phosphatase/drug effects , Alkaline Phosphatase/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Primary Cell Culture , Sp7 Transcription Factor , Medicine, Traditional , Mice, Inbred C57BL
7.
Braz. j. med. biol. res ; 47(9): 759-765, 09/2014. tab, graf
Article in English | LILACS | ID: lil-719322

ABSTRACT

The monoamine serotonin (5-hydroxytryptamine, 5-HT), a well-known neurotransmitter, also has important functions outside the central nervous system. The objective of this study was to investigate the role of 5-HT in the proliferation, differentiation, and function of osteoblasts in vitro. We treated rat primary calvarial osteoblasts with various concentrations of 5-HT (1 nM to 10 µM) and assessed the rate of osteoblast proliferation, expression levels of osteoblast-specific proteins and genes, and the ability to form mineralized nodules. Next, we detected which 5-HT receptor subtypes were expressed in rat osteoblasts at different stages of osteoblast differentiation. We found that 5-HT could inhibit osteoblast proliferation, differentiation, and mineralization at low concentrations, but this inhibitory effect was mitigated at relatively high concentrations. Six of the 5-HT receptor subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-HT2A, 5-HT2B, and 5-HT2C) were found to exist in rat osteoblasts. Of these, 5-HT2A and 5-HT1B receptors had the highest expression levels, at both early and late stages of differentiation. Our results indicated that 5-HT can regulate osteoblast proliferation and function in vitro.


Subject(s)
Animals , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Osteoblasts/drug effects , Serotonin/pharmacology , DNA Primers , Gene Expression , Osteoblasts/cytology , Osteoblasts/metabolism , Primary Cell Culture , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptors, Serotonin/metabolism , Serotonin/metabolism
8.
Arq. bras. endocrinol. metab ; 57(1): 62-70, fev. 2013. graf, tab
Article in Portuguese | LILACS | ID: lil-665764

ABSTRACT

OBJETIVO: Avaliar se a adição de T3 aumenta o potencial osteogênico das células-tronco mesenquimais da medula óssea (CTM-MO) de ratas adultas normais comparado ao de ratas jovens. MATERIAIS E MÉTODOS: CTM-MO foram cultivadas em meio osteogênico e separadas em seis grupos: 1) CTM-MO de ratas jovens; 2) CTM-MO de ratas adultas; 3, 4, 5 e 6) CTM-MO de ratas adultas com T3 nas concentrações de 0,01; 1; 100 e 1000 nM, respectivamente. Foram avaliados: atividade da fosfatase alcalina, conversão do dimetiltiazol (MTT) e síntese de colágeno aos sete, 14 e 21 dias e celularidade e número de nódulos de mineralização aos 21 dias de diferenciação. RESULTADOS: T3 reduziu significativamente a conversão do MTT, a atividade da fosfatase alcalina, a síntese de colágeno e a formação dos nódulos de mineralização em pelo menos uma das doses e dos períodos estudados (p < 0,05). Os valores foram menores quando comparados aos das CTM-MO de ratas jovens e adultas sem T3 (p < 0,05). CONCLUSÃO: T3 apresenta efeitos negativos sobre os fatores envolvidos na diferenciação osteogênica das CTM-MO de ratas adultas.


OBJECTIVE: To examine if triiodothyronine (T3) increases osteogenic differentiation in bone marrow mesenchymal stem cells (BMMSCs) of adult rats compared with young rats. MATERIALS AND METHODS: BMMSCs were cultured in osteogenic medium and distributed into six groups: 1) BMMSCs of young rats; 2) BMMSCs of adult rats; 3, 4, 5 and 6) BMMSCs of adult rats with T3 (0.01, 1, 100 to 1000 nM). We analyzed alkaline phosphatase activity, dimethylthiazol (MTT) conversion, and collagen synthesis at 7, 14, and 21 days, and percentage of cells per field and number of mineralized nodules at 21 days of differentiation. RESULTS: T3 reduced MTT conversion, alkaline phosphatase activity, collagen synthesis, and the synthesis of mineralizalized nodules in at least one of the doses and periods studied (p < 0.05). Values were lower when compared with young and adult rats BMMSCs (p < 0.05) without T3. CONCLUSION: T3 has a negative effect on the factors involved in osteogenic differentiation of BMMSC from adult rats.


Subject(s)
Animals , Female , Rats , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Triiodothyronine/pharmacology , Analysis of Variance , Alkaline Phosphatase/metabolism , Bone Marrow Cells/cytology , Cells, Cultured , Calcification, Physiologic/drug effects , Collagen/metabolism , Models, Animal , Mesenchymal Stem Cells/cytology , Phenotype , Rats, Wistar , Tetrazolium Salts/metabolism , Thiazoles/metabolism
9.
Clinics ; 64(10): 993-998, 2009. ilus, tab
Article in English | LILACS | ID: lil-529543

ABSTRACT

OBJECTIVE: To evaluate the effects of the petroleum ether extract of Cissus quadrangularis on the proliferation rate of bone marrow mesenchymal stem cells, the differentiation of marrow mesenchymal stem cells into osteoblasts (osteoblastogenesis) and extracellular matrix calcification. This study also aimed to determine the additive effect of osteogenic media and Cissus quadrangularis on proliferation, differentiation and calcification. METHODS: MSCs were cultured in media with or without Cissus quadrangularis for 4 weeks and were then stained for alkaline phosphatase. Extracellular matrix calcification was confirmed by Von Kossa staining. marrow mesenchymal stem cells cultures in control media and osteogenic media supplemented with Cissus quadrangularis extract (100, 200, 300 µg/mL) were also subjected to a cell proliferation assay (MTT). RESULTS: Treatment with 100, 200 or 300 µg/mL petroleum ether extract of Cissus quadrangularis enhanced the differentiation of marrow mesenchymal stem cells into ALP-positive osteoblasts and increased extracellular matrix calcification. Treatment with 300 µg/mL petroleum ether extract of Cissus quadrangularis also enhanced the proliferation rate of the marrow mesenchymal stem cells. Cells grown in osteogenic media containing Cissus quadrangularis exhibited higher proliferation, differentiation and calcification rates than did control cells. CONCLUSION: The results suggest that Cissus quadrangularis stimulates osteoblastogenesis and can be used as preventive/alternative natural medicine for bone diseases such as osteoporosis.


Subject(s)
Animals , Male , Rats , Bone Marrow Cells/drug effects , Cissus/chemistry , Mesenchymal Stem Cells , Osteoblasts/drug effects , Osteogenesis/drug effects , Plant Extracts/pharmacology , Alkaline Phosphatase/metabolism , Bone Marrow Cells/cytology , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Extracellular Matrix/metabolism , Mesenchymal Stem Cells , Models, Animal , Osteoblasts/enzymology , Rats, Wistar
10.
J. pediatr. (Rio J.) ; 81(1,supl): s43-s51, mar. 2005. tab
Article in Portuguese | LILACS | ID: lil-406270

ABSTRACT

OBJETIVO: Revisão crítica da literatura sobre os minerais cálcio, fósforo e microelementos na nutrição do pré-termo extremo, considerando a importância no crescimento, mineralização óssea e como componente de dietas. FONTES DOS DADOS: Utilizamos o banco de dados MEDLINE e o Cochrane Database of Systematic Reviews, de 1994 a 2004. Selecionamos artigos com enfoques originais, artigos de revisão e livros específicos. SíNTESE DOS DADOS: As dificuldades na nutrição de prematuros extremos aumentam a freqüência de prematuros com restrição de crescimento, cujas conseqüências futuras estão para serem determinadas. Todavia, há pouca literatura sobre minerais, especialmente sobre micronutrientes na nutrição do pré-termo extremo, considerando-se o deficiente armazenamento e a importância destes em nutrição. O principal enfoque desta revisão foi sobre o cálcio e o fósforo na mineralização óssea e na suplementação em nutrição parenteral e enteral, bem como a avaliação crítica da nutrição pós-alta sobre a mineralização óssea. São abordadas as necessidades de micronutrientes, principalmente selênio e zinco, e a função antioxidante do selênio na provável prevenção de doenças do prematuro com atuação de radicais livres. CONCLUSAO: Considerando os baixos estoques de minerais em prematuros extremos, há necessidade de mais pesquisas sobre minerais na nutrição destes prematuros para definir suas reais necessidades, os aspectos metabólicos, bem como aplicar os conhecimentos na formulação de dietas que permitam prevenir quadros de deficiência e conseqüências a longo prazo. Ainda há controvérsias sobre a influência de fórmulas pós-alta sobre a evolução da doença óssea da prematuridade.


Subject(s)
Humans , Infant, Newborn , Infant Nutrition , Infant, Premature , Infant, Very Low Birth Weight , Minerals/therapeutic use , Calcification, Physiologic/drug effects , Calcium/therapeutic use , Dietary Supplements , Phosphorus/therapeutic use , Trace Elements/therapeutic use
11.
Journal of Korean Medical Science ; : 438-444, 2005.
Article in English | WPRIM | ID: wpr-53830

ABSTRACT

Statins have been postulated to affect the bone metabolism. Recent experimental and epidemiologic studies have suggested that statins may also have bone protective effects. This study assessed the effects of simvastatin on the proliferation and differentiation of human bone marrow stromal cells (BMSCs) in an ex vivo culture. The bone marrow was obtained from healthy donors. Mononuclear cells were isolated and cultured to osteoblastic lineage. In the primary culture, 10(-6) M simvastatin diminished the mean size of the colony forming units-fibroblastic (CFU-Fs) and enhanced matrix calcification. At near confluence, the cells were sub-cultured. Thereafter, the alkaline phosphatase (ALP) activities of each group were measured by the time course of the secondary culture. Simvastatin increased the ALP activity in a dose dependent manner, and this stimulatory effect was more evident during the early period of culture. A 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay was performed during the secondary culture in order to estimate the effect of simvastatin on the proliferation of human BMSCs. When compared to the control group, simvastatin significantly decreased the proliferation of cells of each culture well. 10(-6) M of simvastatin also significantly enhanced the osteocalcin mRNA expression level. This study shows that simvastatin has a stimulatory effect on bone formation through osteoblastic differentiation, and has an inhibitory effect on the proliferative potential of human BMSCs.


Subject(s)
Humans , Alkaline Phosphatase/metabolism , Bone Marrow Cells/cytology , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Colony-Forming Units Assay , Comparative Study , Dose-Response Relationship, Drug , Gene Expression/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Simvastatin/pharmacology , Stromal Cells/cytology , Time Factors
13.
Yonsei Medical Journal ; : 44-48, 1973.
Article in English | WPRIM | ID: wpr-12091

ABSTRACT

Ca45 resorption and incoporration into albino rat-bones in tissue culture was considered in studying the pathogenesis of osteoporosiscaused by cotinued administration of glucocorticoid, hydrocortisone succinate. 18-day old tibias were cultured in a chemically defined media, (BGJb). Hydrocotisone showed no effect on Ca45 resorption and little increase of Ca45 incorporation into bone. This may suggest that hydrocortisone produces osteoporosis not by direct effect but by secondary effects on calcium metabolism.


Subject(s)
Rats , Animals , Bone Development , Bone and Bones/embryology , Bone and Bones/metabolism , Calcification, Physiologic/drug effects , Calcium/metabolism , Calcium Radioisotopes , Hydrocortisone/adverse effects , Hydrocortisone/pharmacology , Osteoporosis/chemically induced , Tibia , Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL